The de Broglie wavelength of an electron having kinetic energy 56 eV is: |
0.022 nm 16.4 Å 0.164 nm 0.0164 nm |
0.164 nm |
The correct answer is Option (3) → 0.164 nm Given, K.E., Kinetic energy of an electron = 56eV and, $K.E.=\frac{P^2}{2m}$ P = momentum of $e^-$ m = mass of $e^-$ $P=\sqrt{2m\,K.E.}$ $=\sqrt{2×9.1×10^{-31}×56×1.602×10^{-19}}$ $=4.04×10^{-24}$ Now, De-Broglie wavelength, $λ=\frac{h}{P}$ $λ=\frac{6.63×10^{-34}}{4.04×10^{-24}}$ $=1.64×10^{-10}m$ $=0.164nm$ |