Statement-1: The value of the integral Statement-2: $\int\limits_a^b f(x) d x=\int\limits_a^b f(a+b-x) d x$ |
Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. Statement-1 is True, Statement-2 is True; Statement-2 is not a correct explanation for Statement-1. Statement-1 is True, Statement-2 is False. Statement-1 is False, Statement-2 is True. |
Statement-1 is False, Statement-2 is True. |
Clearly, statement-2, being a standard property, is true. We know that $\int\limits_a^b \frac{f(x)}{f(x)+f(a+b-x)} d x=\frac{b-a}{2}$ ∴ $\int\limits_{\pi / 6}^{\pi / 3} \frac{1}{1+\sqrt{\tan x}} d x=\int\limits_{\pi / 6}^{\pi / 3} \frac{\sqrt{\cos x}}{\sqrt{\cos x}+\sqrt{\sin x}} d x=\frac{1}{2}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)=\frac{\pi}{12}$ So, statement- 1 is not true. |