If x2 - \(\sqrt[2]{10}\)x + 1 = 0, then find x - \(\frac{1}{x}\) |
\(\sqrt {6}\) 7 4 3\(\sqrt {6}\) |
\(\sqrt {6}\) |
Formula → [If x + \(\frac{1}{x}\) = M, x - \(\frac{1}{x}\) = \(\sqrt {M^2 - 4}\)] x2 - \(\sqrt[2]{10}\)x + 1 = 0 x2 + 1 = \(\sqrt[2]{10}\)x x + \(\frac{1}{x}\) = \(\sqrt[2]{10}\) x - \(\frac{1}{x}\) = \(\sqrt {(\sqrt[2]{10})^2 - 4}\) x - \(\frac{1}{x}\) = \(\sqrt {6}\) |