If $2P(A) = P(B) =\frac{5}{13}$ and $P(A|B) =\frac{2}{5}$, then $P(A∩B)$ is |
$\frac{1}{13}$ $\frac{2}{13}$ $\frac{3}{13}$ $\frac{4}{13}$ |
$\frac{2}{13}$ |
The correct answer is Option (2) → $\frac{2}{13}$ Given: $2P(A) = P(B) = \frac{5}{13}$ $P(A \mid B) = \frac{2}{5}$ Step 1: Find $P(A)$ and $P(B)$
$2P(A) = \frac{5}{13} \Rightarrow P(A) = \frac{5}{26}$ Step 2: Use conditional probability: $P(A \mid B) = \frac{P(A \cap B)}{P(B)} \Rightarrow \frac{2}{5} = \frac{P(A \cap B)}{5/13}$ $\Rightarrow P(A \cap B) = \frac{2}{5} \cdot \frac{5}{13} = \frac{2}{13}$ |