The function $f(x)=(\sin 2x)^{\tan^22x}$ is not defined at $x=\frac{π}{4}$. Then value of $f(\frac{π}{4})$ so that f is continuous at $x=\frac{π}{4}$ is |
$\sqrt{e}$ 1 2 none of these |
none of these |
f is continuous at $x=\frac{π}{4}$ if $\underset{x→\frac{π}{4}}{\lim}f(x)=f(\frac{π}{4})$ Now $L=\underset{x→\frac{π}{4}}{\lim}(\sin 2x)^{\tan^22x}$ $⇒\log L=\underset{x→\frac{π}{4}}{\lim}tan^22x\log\sin 2x=\underset{x→\frac{π}{4}}{\lim}\frac{\log\sin 2x}{\cot^22x}$ $(\frac{∞}{∞})$ $=\underset{x→\frac{π}{4}}{\lim}\frac{2\cot 2x}{-2\cot 2x\,cosec^22x.2}=-\frac{1}{2}$ $∴L=e^{-1/2}⇒f(\frac{π}{4})=e^{-1/2}=\frac{1}{\sqrt{e}}$ |