Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

If $I=\sum\limits_{k=1}^{98} \int\limits_k^{k+1} \frac{k+1}{x(x+1)} d x$, then

(a) $I>\log _e 99$
(b) $I<\log _e 99$
(c) $I<\frac{49}{50}$
(d) $I>\frac{49}{50}$

Options:

(a), (b)

(b), (c)

(a), (c)

(b), (d)

Correct Answer:

(b), (d)

Explanation:

For any $x \in[k, k+1], k \in N$, we know that

$\frac{1}{x+1}<\frac{k(k+1)}{x(x+1)}<\frac{1}{x}$

$\Rightarrow \int\limits_k^{k+1} \frac{1}{x+1} d x<\int\limits_k^{k+1} \frac{k(k+1)}{x(x+1)} d x<\int\limits_k^{k+1} \frac{1}{x} d x$

$\Rightarrow \sum\limits_{k=1}^{98} \int\limits_k^{k+1} \frac{1}{x+1} d x<\sum\limits_{k=1}^{98} \int\limits_k^{k+1} \frac{k(k+1)}{x(x+1)} d x<\sum\limits_{k=1}^{98} \int\limits_k^{k+1} \frac{1}{x} d x$

$\Rightarrow \sum\limits_{k=1}^{98}\left\{\log _e(k+2)-\log _e(k+1)\right\}<I<\sum\limits_{k=1}^{98}\left\{\log _e(k+1)-\log _e k\right\}$

$\Rightarrow \log _e 100-\log _e 2<I<\log _e 99-\log _e 1$

$\Rightarrow \log _e 50<I<\log _e 99$