If $\vec a,\vec b$ and $\vec c$ are unit coplanar vectors, then $\begin{bmatrix}2\vec a-3\vec b& 7\vec b-9\vec c& 12\vec c-23\vec a\end{bmatrix}$ |
0 $\frac{1}{2}$ 24 32 |
0 |
$\begin{bmatrix}2\vec a-3\vec b& 7\vec b-9\vec c& 12\vec c-23\vec a\end{bmatrix}$ $P=\begin{vmatrix}2&-3&0\\0&7&-9\\-23&0&12\end{vmatrix}[\vec a\,\,\vec b\,\,\vec c]$ as $\vec a\,\,\vec b\,\,\vec c$ are coplanar. so $[\vec a\,\,\vec b\,\,\vec c]=0$ Hence P = 0 ⇒ given vectors are coplanar as well. |