If the equation $k(21x^2 + 24) + rx + (14x^2 − 9) = 0$, $k(7x^ 2 + 8) + px + (2x^ 2 − 3) = 0$ have both roots common, then the value of $\frac{p}{r}$ is: |
$\frac{1}{3}$ $\frac{2}{5}$ $\frac{4}{3}$ $\frac{7}{5}$ |
$\frac{1}{3}$ |
$k(21x^2 + 24) + rx + (14x^2 − 9) = 0$ ----- (eq.1) $k(7x^ 2 + 8) + px + (2x^ 2 − 3) = 0$ ------ (eq. 2) Since the roots of the equation are common, the coefficients are in proportion. The eq.1 can be written as, (21k +14)x2 + rx + 24k - 9 = 0 The eq.2 can be written as, (7k + 2)x2 + px + 8k - 3 = 0 = \(\frac{21k + 14}{7k + 2}\) = \(\frac{r}{p}\) = \(\frac{24k - 9}{8k - 3}\) = \(\frac{r}{p}\) = \(\frac{24k - 9}{8k - 3}\) = \(\frac{r}{p}\) = 3 × \(\frac{8k - 3}{8k - 3}\) = \(\frac{r}{p}\) = \(\frac{3}{1}\) = \(\frac{p}{r}\) = \(\frac{1}{3}\) |