When 1 cm thick surface is illuminated with light of wavelength λ, the stopping potential is V. When the same surface is illuminated by light of wavelength 2λ, the stopping potential is V/3. Threshold wavelength for metallic surface is: |
4λ / 3 4λ 6λ 8λ / 3 |
4λ |
According to the question, $eV=hc(\frac{1}{λ}-\frac{1}{λ_0})$ (i) and $\frac{eV}{3}=hc(\frac{1}{2λ}-\frac{1}{λ_0})$ (ii) Dividing eq. (i) by eq. (ii), we get $3=\frac{(\frac{1}{λ}-\frac{1}{λ_0})}{(\frac{1}{2λ}-\frac{1}{λ_0})}$ or $3(\frac{1}{2λ}-\frac{1}{λ_0})=\frac{1}{2λ}-\frac{1}{λ_0}$ or $\frac{3}{2λ}-\frac{1}{λ}=\frac{3}{λ_0}-\frac{1}{λ_0}$ or $\frac{1}{2λ}=\frac{2}{λ_0}$ Threshold wavelength for metallic surface $λ_0=4λ$ |