If P and Q are non-singular square matrices of the same order, then $(PQ^{-1})^{-1}$ equals |
$PQ$ $P^{-1}Q$ $P^{-1}Q^{-1}$ $QP^{-1}$ |
$QP^{-1}$ |
The correct answer is Option (4) → $QP^{-1}$ Given: $P$ and $Q$ are non-singular square matrices We need: $(PQ^{-1})^{-1}$ Use property: $(AB)^{-1} = B^{-1} A^{-1}$ $(PQ^{-1})^{-1} = (Q^{-1})^{-1} P^{-1} = Q P^{-1}$ |