Consider the following data
The equation of straight line trend by method of least square for the above data is given by |
$y = 2x-26$ $y = 2x+26$ $y=x-1999$ $y = x - 13$ |
$y=x-1999$ |
The correct answer is Option (3) → $y=x-1999$ $n=5,\ \sum x=10060,\ \sum y=65,\ \sum xy=130790,\ \sum x^{2}=20240730$ $b=\frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^{2} - (\sum x)^{2}} =\frac{5\times130790 - 10060\times65}{5\times20240730 - (10060)^{2}}=1$ $a=\frac{\sum y - b\sum x}{n}=\frac{65 - 1\times10060}{5}=-1999$ ${\,\text{Trend line: }y = 1\! \cdot x - 1999\,}$ |