If 2000 electric field lines enter a given volume of closed space and 4000 field lines diverge from it, then the total charge within the volume is (Given $ε_0 = 8.85 × 10^{-12} C^2m^{-2}N$) |
$1.01 × 10^{-6} C$ $1.77 × 10^{-8} C$ $2.83 × 10^5 C$ $6.68 × 10^7 C$ |
$1.77 × 10^{-8} C$ |
The correct answer is Option (2) → $1.77 × 10^{-8} C$ Given: Number of electric field lines entering: $N_{\text{in}} = 2000$ Number of electric field lines leaving: $N_{\text{out}} = 4000$ Permittivity: $\varepsilon_0 = 8.85 \times 10^{-12} \, \text{C}^2/\text{N·m}^2$ Net number of field lines leaving: $N_{\text{net}} = N_{\text{out}} - N_{\text{in}} = 4000 - 2000 = 2000$ Using Gauss's law: $\Phi_E = \frac{Q}{\varepsilon_0}$ Assuming 1 field line corresponds to flux unit $\phi_0$, total flux: $\Phi_E = N_{\text{net}} \cdot \phi_0$ Then charge: $Q = \varepsilon_0 \Phi_E = \varepsilon_0 \cdot N_{\text{net}} \cdot \phi_0$ For standard proportionality, taking each field line as 1 unit of flux, $Q = \varepsilon_0 \cdot 2000 = 8.85 \times 10^{-12} \cdot 2000 = 1.77 \times 10^{-8} \, \text{C}$ Answer: $Q = 1.77 \times 10^{-8} \, \text{C}$ |