Under which of the following conditions the Poisson distribution is the limiting case of, binomial distribution: (A) The number of trials is indefinitely large. Choose the correct answer from the options given below: |
(A), (B) and (C) only (A) and (B) only (B) and (C) only (A), (C) and (D) only |
(A), (B) and (C) only |
The correct answer is Option (1) → (A), (B) and (C) only $\text{Binomial probability: }P_{n}(X=k)=\frac{n!}{k!(n-k)!}\,p^{k}(1-p)^{\,n-k}.$ $\text{Assume }n\to\infty,\ p\to 0,\ np=\lambda\ (\text{finite}).\ \text{Put }p=\frac{\lambda}{n}.$ $\frac{n!}{k!(n-k)!}\,p^{k}=\frac{n(n-1)\cdots(n-k+1)}{k!}\left(\frac{\lambda}{n}\right)^{k}=\frac{\lambda^{k}}{k!}\prod_{j=0}^{k-1}\left(1-\frac{j}{n}\right).$ $\text{As }n\to\infty\ \text{the product }\prod_{j=0}^{k-1}\left(1-\frac{j}{n}\right)\to 1\ \Rightarrow\ \frac{n!}{k!(n-k)!}\,p^{k}\to\frac{\lambda^{k}}{k!}.$ $(1-p)^{\,n-k}=\left(1-\frac{\lambda}{n}\right)^{n}\left(1-\frac{\lambda}{n}\right)^{-k}\to e^{-\lambda}\cdot 1=e^{-\lambda}\ \text{as }n\to\infty.$ $\ \lim_{n\to\infty}P_{n}(X=k)=e^{-\lambda}\frac{\lambda^{k}}{k!},\ k=0,1,2,\dots\ $ $\text{Hence the Poisson distribution arises from the binomial distribution under the conditions:}$ $\text{(A) }n\to\infty\ (\text{True}),\quad\text{(B) }p\to 0\ (\text{True}),\quad\text{(C) }np=\lambda\ \text{finite}\ (\text{True}),\quad\text{(D) }p\ \text{large (False).}$ |