The solution set of the linear constraints $x-2y≥ 0,2x-y≤-4,x ≥ 0$ and $y ≥ 0$ is |
$\phi$ $\{(-1,0), (0,2)\}$ $\{(-1,0), (0,2), (0,0)\}$ unbounded region in first quadrant |
$\phi$ |
The correct answer is Option (1) → $\phi$ Given constraints: 1) $x - 2y \geq 0 \Rightarrow x \geq 2y$ 2) $2x - y \leq -4$ 3) $x \geq 0$, $y \geq 0$ Now analyze the feasible region step-by-step: From (1): $x \geq 2y$ (Region lies to the right of the line $x = 2y$) From (2): $2x - y \leq -4 \Rightarrow y \geq 2x + 4$ (Region lies above the line $y = 2x + 4$) Also, $x \geq 0$ and $y \geq 0$ means we are in the first quadrant. We combine these to get: $x \geq 2y$ and $y \geq 2x + 4$ Substitute $x = 2y$ into $y \geq 2x + 4$: $y \geq 2(2y) + 4 = 4y + 4$ ⟹ $y - 4y \geq 4$ ⟹ $-3y \geq 4$ ⟹ $y \leq -\frac{4}{3}$ But this contradicts $y \geq 0$. Conclusion: No feasible region exists that satisfies all constraints. Answer: The solution set is the empty set. |