The value of $\frac{cos^289°+cos^21°}{cos30°sin90°-sin30°cos90°}$ is : |
$\frac{2}{\sqrt{3}}$ $2\sqrt{3}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{1-\sqrt{3}}$ |
$\frac{2}{\sqrt{3}}$ |
Using , cos θ = sin ( 90º - θ ) Now, $\frac{cos^289°+cos^21°}{cos30°sin90°-sin30°cos90°}$ = $\frac{cos^289°+sin^289°}{√3/2 × 1 - 1/2 × 0}$ using , sin²θ + cos²θ = 1 = $\frac{1}{√3/2}$ = $\frac{2}{√3}$ |