The wavelength of second line of Balmer series in terms of Rydberg constant R is |
$\frac{36}{5R}$ $\frac{16}{5R}$ $\frac{16}{3R}$ $\frac{36}{3R}$ |
$\frac{16}{3R}$ |
The correct answer is Option (3) → $\frac{16}{3R}$ Balmer series: $\;\; \frac{1}{\lambda} = R \left( \frac{1}{2^2} - \frac{1}{n^2} \right)$, where $n = 3,4,5,\dots$ First line (H-α): $n=3 \to 2$ Second line (H-β): $n=4 \to 2$ $\frac{1}{\lambda} = R \left( \frac{1}{4} - \frac{1}{16} \right)$ $\frac{1}{\lambda} = R \left( \frac{4-1}{16} \right) = \frac{3R}{16}$ $\lambda = \frac{16}{3R}$ Answer: $\;\; \lambda = \frac{16}{3R}$ |