If $525 ≡(10+ K) (mod\, 7)$ where $K ∈ N$, then the least value of K is: |
3 4 5 6 |
4 |
The correct answer is Option (2) → 4 Given$525 \equiv (10 + K) \pmod{7}$ Compute $525 \mod 7$ : $525 \div 7 = 75$ remainder $0 \Rightarrow 525 \equiv 0 \pmod{7}$ Compute $10 \mod 7$: $10 \equiv 3 \pmod{7}$ Then $10 + K \equiv 3 + K \equiv 0 \pmod{7} \Rightarrow K \equiv -3 \equiv 4 \pmod{7}$ AnswerLeast value of $K = 4$ |