Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Question:

If $525 ≡(10+ K) (mod\, 7)$ where $K ∈ N$, then the least value of K is:

Options:

3

4

5

6

Correct Answer:

4

Explanation:

The correct answer is Option (2) → 4

Given

$525 \equiv (10 + K) \pmod{7}$

Compute $525 \mod 7$ : $525 \div 7 = 75$ remainder $0 \Rightarrow 525 \equiv 0 \pmod{7}$

Compute $10 \mod 7$: $10 \equiv 3 \pmod{7}$

Then $10 + K \equiv 3 + K \equiv 0 \pmod{7} \Rightarrow K \equiv -3 \equiv 4 \pmod{7}$

Answer

Least value of $K = 4$