For $y=x^3\, log_ex, x> 0$ A. $\left.\frac{dy}{dx}\right]_{x=e}=4e$ B. $\frac{d^2y}{dx^2}=x^2(5+log_ex^3)$ C. $\frac{dy}{dx}=x^2(1+log_ex^3)$ D. $\left.\frac{d^2y}{dx^2}\right]_{x=e}=11e$ E. $\left.\frac{d^2y}{dx^2}\right]_{x=1}=5$ Choose the correct answer from the options given below : |
A, B, C, E A, B, E, D C, D, E B, D, E |
C, D, E |
The correct answer is Option (3) → C, D, E $y=x^3\log_ex$ $\frac{dy}{dx}=3x^2\log_ex+x^2$ $=x^2(3\log_ex+1)=x^2(\log_ex^3+1)$ → (C) Now, $\frac{d^2y}{dx^2}=3(2x\log_ex+x)+2x$ $\left.\frac{d^2y}{dx^2}\right|_{x=e}=3(2e\log_ee+e)+2e$ $=3(2e+e)+2e$ $=11e$ → (D) $\left.\frac{d^2y}{dx^2}\right|_{x=1}=3(2×0+1)+2(1)$ $=5$ → (E) |