If $z_0$ and $z_1 $ are respectively the minimum and the maximum values of $z=-3x+4y$ over the feasible region represented by constraints $x+2y≤8$ $3x+2y≤ 12 $ $x≥ 0, y ≥ 0$ then $z_1+z_0$ is equal to : |
22 -6 4 16 |
-6 |
The correct answer is Option (2) → -6 $Z_1=Z_{max}(2,3)=-3×2+4×3=6$ $Z_0=Z_{min}(4,0)=-3×4+4×0=-12$ $Z_0+Z_1=-6$ |