Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Linear Programming

Question:

If $z_0$ and $z_1 $ are respectively the minimum and the maximum values of $z=-3x+4y$ over the feasible region represented by constraints

$x+2y≤8$

$3x+2y≤ 12 $

$x≥ 0, y ≥ 0$

then $z_1+z_0$ is equal to :

Options:

22

-6

4

16

Correct Answer:

-6

Explanation:

The correct answer is Option (2) → -6

$Z_1=Z_{max}(2,3)=-3×2+4×3=6$

$Z_0=Z_{min}(4,0)=-3×4+4×0=-12$

$Z_0+Z_1=-6$