The side of an equilateral ΔABC is $3\sqrt{7}$ cm. P is a point on side BC such that BP : PC = 1 : 2. The length (in cm) of AP is: |
6 7 $7\sqrt{3}$ $6\sqrt{3}$ |
7 |
\(\angle\)ABC = \({60}^\circ\) (angle of an equilateral triangle) Now, according to the question, BC = BP : PC = 1 : 2 BP = \(\frac{1 \;×\; 3√ 7}{3}\) = \(\sqrt {7 }\) PC = \(\frac{2 \;×\; 3√ 7}{3}\) = 2\(\sqrt {7 }\) Now, Apply cosine rule on triangle APB = cos 60 = (\( {b }^{2 } \) + \( {c }^{2 } \) - \( {a }^{2 } \))/2bc = \(\frac{1}{2}\) = (\( {(3√7)}^{2 } \) + \( {√7}^{2 } \) - \( {AP}^{2 } \))/(2 x 3√7 x √7) = \(\frac{1}{2}\) = [(63 + 7) - \( {AP}^{2 } \)]/42 = \(\frac{1}{2}\) = [70 - \( {AP}^{2 } \)]/42 = \( {AP}^{2 } \) = 70 - 21 = \( {AP}^{2 } \) = 49 = AP = 7 Therefore, AP is 7. |