Consider the LPP, Max Z= 2x + y, subject to the conditions $3x+2y ≤ 6$ $4x+y ≤ 4 $ $x ≥ 0, y ≥0,$ then the maximum value of the objective function is : |
3 $\frac{16}{5}$ $\frac{14}{5}$ $\frac{21}{5}$ |
$\frac{16}{5}$ |
The correct answer is Option (2) → $\frac{16}{5}$ $3x+2y ≤ 6⇒\frac{x}{2}+\frac{y}{3}≤ 6$ $4x+y ≤ 4⇒\frac{x}{1}+\frac{y}{4}≤1$ $x, y ≥0$ ⇒ first quadrant finding intersection $3x+2y=6$ ...(1) $4x+y=4$ ...(2) Eq. (2) × 2 - Eq. (1) $8x+6y-3x-2y=8-6$ $5x=2$ $⇒x=\frac{2}{5}$ from (2) $\frac{8}{5}+y=4$ so $y=\frac{12}{5}$
Maximum value → $Z_B=\frac{16}{5}$ |