The direction cosines of the line which is perpendicular to the lines with direction ratios 1, -2, -2 and 0, 2, 1 are: |
$\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$ $-\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$ $\frac{2}{3},-\frac{1}{3},-\frac{2}{3}$ $\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$ |
$\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$ |
The correct answer is Option (1) → $\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$ DRs → 1, -2, -2 = DRI DRs → 0, 2, 1 = DRII DR's perpendicular = cross (DRI × DRII) = 2, -1, 2 DCs = $\frac{2,-1,2}{\sqrt{2^2+1^2+2^2}}=\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$ |