Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Three-dimensional Geometry

Question:

The direction cosines of the line which is perpendicular to the lines with direction ratios 1, -2, -2 and 0, 2, 1 are:

Options:

$\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$

$-\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$

$\frac{2}{3},-\frac{1}{3},-\frac{2}{3}$

$\frac{2}{3}, \frac{1}{3}, \frac{2}{3}$

Correct Answer:

$\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$

Explanation:

The correct answer is Option (1) → $\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$

DRs → 1, -2, -2 = DRI

DRs → 0, 2, 1 = DRII

DR's perpendicular = cross (DRI × DRII)

= 2, -1, 2

DCs = $\frac{2,-1,2}{\sqrt{2^2+1^2+2^2}}=\frac{2}{3},-\frac{1}{3}, \frac{2}{3}$