The volume V of water passing through a point of a uniform tube during t seconds is related to the cross-sectional area A of the tube and velocity u of water by the relation. $V \propto A^\alpha u^\beta t^\gamma$ Which one of the following will be true? |
$\alpha =\beta=\gamma$ $\alpha ≠ \beta=\gamma$ $\alpha=\beta ≠ \gamma$ $\alpha ≠ \beta ≠ \gamma$ |
$\alpha ≠ \beta=\gamma$ |
$V = k . \Delta^\alpha u^{\beta} t^{\gamma}$ $L^3=k\left(L^2\right)^\alpha . \left(L T^{-1}\right)^\beta . (T)^\gamma$ $L^3=k . L^{(2\alpha+\beta)} T^{-\beta+\gamma}$ $2 \alpha+\beta=3$ $-\beta+\gamma=0$ $\beta=\gamma,~~2\alpha+\beta=3$ so are can conclude that $\alpha ≠ \beta=\gamma$ |