The position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i} + 2\hat{j} - \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively in the ratio 2 : 1 externally is : |
$-\frac{1}{3}\hat{i} +\frac{4}{3}\hat{j}+\frac{1}{3}\hat{k}$ $3\hat i+3\hat j-3\hat k$ $3\hat{i}-3\hat{k}$ $\frac{1}{3}\hat{i} -\frac{4}{3}\hat{j}-\frac{1}{3}\hat{k}$ |
$3\hat i+3\hat j-3\hat k$ |
The correct answer is option (2) → $3\hat i+3\hat j-3\hat k$ dividing into 2 : 1 externally is equivalent to dividing in 2 : -1 so $\frac{2(\hat{i} + 2\hat{j} - \hat{k})-1(-\hat{i} + \hat{j} + \hat{k})}{2-1}$ $=\frac{3\hat i+3\hat j-3\hat k}{1}$ $=3\hat i+3\hat j-3\hat k$ |