If $\begin{bmatrix} x & y & z \\2 & u & v \\ -1& 6 & w\end{bmatrix} $ is skew symmetric matrix, then value of $x^2+y^2+z^2 +u^2+v^2+w^2 $ is : |
1 4 36 41 |
41 |
The correct answer is Option (4) → 41 $\begin{bmatrix} -x & -y & -\\-2 & -u & -v \\ 1& -6 & -w\end{bmatrix}=\begin{bmatrix} x & 2 & -1 \\y & u & 6 \\ z& v & w\end{bmatrix} = [A^T=-A]$ $⇒x=0,y=-2,z=1,u=0,v=-6,w=0$ $x^2+y^2+z^2 +u^2+v^2+w^2=0^2+(−2)^2+(1)^2+0^2+(−6)^2+0^2$ $=0+4+1+0+36+0=41$ |