A magnetic dipole aligned parallel to a uniform magnetic field requires a work of W units to rotate it through 60°. The torque exerted by the field on the dipole in this new position is: |
$2 W$ $W$ $\sqrt{3}W$ $\frac{\sqrt{3}}{2}W$ |
$\sqrt{3}W$ |
The correct answer is Option (3) → $\sqrt{3}W$ The work done W to rotate a magnetic dipole is, $W=\int\limits_{θ_1}^{θ_2}τ\,dθ$ and, Torque, $τ=mB\sin θ$ $∴W=\int\limits_{0}^{60}mB\sin θ\,dθ$ $=mB[-\cos θ]_{0}^{60}$ $=mB\left[-\frac{1}{2}+1\right]=\frac{mB}{2}$ Now, to find the new torque at $θ=0$ $τ=mB\sin 60°$ $=mB\frac{\sqrt{3}}{2}=2W×\frac{\sqrt{3}}{2}=\sqrt{3}W$ |