In Young's double slit experiment using monochromatic light of wavelength λ, the intensity of light at a point on the screen where path difference is λ, is 'T' units. What is the intensity of light at a point where path difference is $\frac{λ}{4}$? |
Zero 3T $\frac{T}{3}$ $\frac{T}{2}$ |
$\frac{T}{2}$ |
The correct answer is Option (4) → $\frac{T}{2}$ In young double slit experiment the intensity at a point on the screen is - $I=I_0(1+\cos \phi)$ where, $I_0$, Maximum intensity (constructive interference) $\phi$, Phase difference between the waves. $\phi=\frac{2πΔx}{λ}$ Case 1: Path difference = $λ$ $\phi=\frac{2πλ}{λ}=2π$ $∴T=I_0(1+\cos 2π)$ $=2I_0$ Case 2: Path difference = $λ/4$ $Δx=λ/4$, the phase difference $\phi=\frac{2π(λ/4)}{λ}=\frac{π}{2}$ At $\phi=\frac{π}{2},\cos \phi=0$ $I=I_0(1+\cos\frac{π}{2})=I_0$ $∴I=\frac{T}{2}$ |