What will be the angle of minimum deviation if the refracting angle of a prism be 2θ, and the refractive index of the material of the prism be cot θ? |
$(π/2-2θ)$ $(π-2θ)$ $(π +2θ)$ $(π-4θ)$ |
$(π-4θ)$ |
The correct answer is Option (4) → $(π-4θ)$ Refractive index of the prism: $\mu = \cot \theta$ Refracting angle of prism: $A = 2\theta$ Relation for minimum deviation: $\mu = \frac{\sin \left(\frac{A + D_m}{2}\right)}{\sin \frac{A}{2}}$ Substitute values: $\cot \theta = \frac{\sin \left(\frac{2\theta + D_m}{2}\right)}{\sin \theta}$ $\cot \theta = \frac{\sin (\theta + \frac{D_m}{2})}{\sin \theta}$ $\cos \theta = \sin \left(\theta + \frac{D_m}{2}\right)$ $\sin \left(\frac{\pi}{2} - \theta \right) = \sin \left(\theta + \frac{D_m}{2}\right)$ Thus, $\frac{\pi}{2} - \theta = \theta + \frac{D_m}{2}$ $\frac{D_m}{2} = \frac{\pi}{2} - 2\theta$ $D_m = \pi - 4\theta$ |