| If \(y=e^{-x}(A \cos x+B \sin x)\), then \(y\) is a solution of |
\(\frac{d^2 y}{dx^2}+2\frac{dy}{dx}=0\) \(\frac{d^2 y}{dx^2}-2\frac{dy}{dx}+2y=0\) \(\frac{d^2 y}{dx^2}+2\frac{dy}{dx}+2y=0\) \(\frac{d^2 y}{dx^2}+2y=0\) |
| \(\frac{d^2 y}{dx^2}+2\frac{dy}{dx}+2y=0\) |
| \(y\) satisfies equation given in (c). |