Area of the parallelogram, whose adjacent sides are given by the vectors $\vec a =2\hat i-\hat j+5\hat k$ and $\vec b = 2\hat i+\hat j+ 2\hat k$, is: |
$\sqrt{105}$ $\sqrt{101}$ $\sqrt{103}$ $\sqrt{102}$ |
$\sqrt{101}$ |
The correct answer is Option (2) → $\sqrt{101}$ Area of parallelogram, Area = $|a×b|$ $=\begin{vmatrix}\hat i&\hat j&\hat k\\2&-1&5\\2&1&2\end{vmatrix}$ $=|-7\hat i+6\hat j+4\hat k|$ $|a×b|=\sqrt{49+36+16}$ $=\sqrt{101}$ sq. units |