The third line of Balmer series of an ion equivalent to hydrogen atom has wavelength of 108.5 nm. The ground state energy of an electron of this ion will be |
3.4 eV 13.6 eV 54.4 eV 122.4 eV |
54.4 eV |
For third line of Balmer series $n_1=2$, $n_2=5$ ∴ $\frac{1}{\lambda}=R Z^2\left[\frac{1}{n_1^2}-\frac{1}{n_2^2}\right]$ gives $Z^2=\frac{n_1^2 n_2^2}{\left(n_2^2-n_1^2\right) \lambda R}$ On putting values $Z=2$ From $E=-\frac{13.6 Z^2}{n^2}=\frac{-13.6(2)^2}{(1)^2}=-54.4 eV$ |