If $N_0$ is the original mass of the substance of half life $t_{\frac{1}{2}}=4$ years, then the amount of substance left after 12 years is: |
$N_0 / 16$ $N_0 / 4$ $N_0 / 8$ $N_0 / 2$ |
$N_0 / 8$ |
The correct answer is Option (3) → $N_0 / 8$ The exponential Decay law is, $N=N_0\left(\frac{1}{2}\right)^{\frac{t}{t_{1/2}}}$ $⇒N=N_0\left(\frac{1}{2}\right)^{\frac{12}{4}}$ $⇒N=N_0×\frac{1}{8}=\frac{N_0}{8}$ |