In the following reaction: \(ax \rightarrow by\) \(log_{10}\left(\frac{dx}{dt}\right) = log_{10}\left(\frac{dy}{dt}\right) + 0.4771\) \(X\) and \(Y\) respectively can be : [Given: log 3 = 0.4771] |
\(C_2H_2\) and \(C_6H_6\) Pentane and 2,2-Dimethylpropane \(O_2\) and \(O_3\) \(N_2O_4\) and \(NO_2\) |
\(C_2H_2\) and \(C_6H_6\) |
The correct answer is option 1. \(C_2H_2\) and \(C_6H_6\). Given, \(log_{10}\left(\frac{dx}{dt}\right) = log_{10}\left(\frac{dy}{dt}\right) + 0.4771\) or, \(log_{10}\left(\frac{dx}{dt}\right) = log_{10}\left(\frac{dy}{dt}\right) + log_{10}(3)\) or, \(log_{10}\left(\frac{dx}{dt}\right) = log_{10}\left(\frac{3 dy}{dt}\right)\) or, \(\frac{dx}{dt} = \frac{3dy}{dt} ---------(i)\) For the given reaction \(ax \rightarrow by\) Overall rate, \('r'\) can be expressed as: \(r = -\frac{1}{a}\frac{dx}{dt} = \frac{1}{b}\frac{dy}{dt}\) Comparing equation (i) with the above equation we get \(x:y = 1:3\) The only option that follows the ratio is option (1) \(C_2H_2\) and \(C_6H_6\). |