The random variable x can take values 0, 1, 2, 3, Given that P(x=0)=P(x-1)=P and P(x-2)=P(x-3) such that $E(x^2)=2E(x)$, then value of 'P' is : |
$\frac{1}{4}$ $\frac{3}{8}$ $\frac{2}{3}$ $\frac{5}{8}$ |
$\frac{3}{8}$ |
The correct answer is Option (2) → $\frac{3}{8}$ Given, $P(x=0)=P(x-1)=P$ $P(x-2)=P(x-3)$ $E(x^2)=2E(x)$ Since the total probability must be 1, $p+p+q+=1$ $⇒p+q=\frac{1}{2}$ ....(1) $E(x)=0.p+1.p+2.q+3.q=p+5q=\frac{1}{2}+4q$ $E(x^2)=0^2.p+1^2.p+2^2.q+3^2.q=p+13q=\frac{1}{2}+12q$ and, $E(x)=E(x^2)$ $\frac{1}{2}+4q=\frac{1}{2}+12q$ $q=\frac{1}{8}$ $⇒p=\frac{3}{8}$ |