Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Definite Integration

Question:

The value of $\int\limits_0^1 [\log x - \log(1 - x)] dx$ is

Options:

$\frac{1}{2}$

2

1

0

Correct Answer:

0

Explanation:

The correct answer is Option (4) → 0

Given: $I=\int_{0}^{1}[\log x - \log(1-x)]\,dx$

Substitute $t=1-x \Rightarrow dx=-dt$:

$I=\int_{1}^{0}[\log(1-t)-\log t](-dt)=\int_{0}^{1}[\log(1-t)-\log t]\,dt$

Thus $I=-I \Rightarrow 2I=0 \Rightarrow I=0$