Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

Let R be the set of all real numbers and f : R → Range f be given by $f(x)=3 x^2+1$. Then $f^{-1}\{1,2\}$ is:

Options:

$\left\{-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\}$

$\left\{-\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}\right\}$

$\left[-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right]$

$\left[0, \frac{1}{\sqrt{3}}\right]$

Correct Answer:

$\left\{-\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}\right\}$

Explanation:

The correct answer is Option (2) → $\left\{-\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}\right\}$

$y=3x^2+1⇒±\sqrt{\frac{y-1}{3}}=x$

at $y=1,x=0$

$y=2, x=±\sqrt{\frac{2-1}{3}}=±\frac{1}{\sqrt{3}}$

so $f^{-1}\{1,2\}=\left\{-\frac{1}{\sqrt{3}}, 0, \frac{1}{\sqrt{3}}\right\}$