Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Applications of Derivatives

Question:

The interval in which the function f given by $f(x)=x^3+\frac{1}{x^3}, x \neq 0$ is increasing:

Options:

$(-\infty, \infty)$

$(-1,0) \cup(0,1)$

$(-\infty,-1) \cup(1, \infty)$ 

$(-1,1)$

Correct Answer:

$(-\infty,-1) \cup(1, \infty)$ 

Explanation:

The correct answer is Option (3) - $(-\infty,-1) \cup(1, \infty)$

$f(x)=x^3+\frac{1}{x^3}$

$f'(x)=3x^2-\frac{3}{x^4}=0$

$⇒\frac{3(x^6-1)}{x^4}=0$

$x=±1$

$f'(x)>0$ in $(-\infty,-1) \cup(1, \infty)$