If the system of linear equations $x+y+z=2, 2x+y-z=3$ and $3x+2y+kz= 4$ has a unique solution, then: |
$k=0$ $-1 < k < 1$ $k≠0$ $-3<k<3$ |
$k≠0$ |
The correct answer is Option (3) → $k≠0$ Given system of linear equations, $x+y+z=2$ $2x+y-z=3$ $3x+2y+kz= 4$ $A=\begin{bmatrix}1&1&1\\2&1&-1\\3&2&k\end{bmatrix}$ $det(A)≠0$ $\begin{vmatrix}1&1&2\\2&1&-1\\3&2&k\end{vmatrix}=1(k+2)-1(2k+3)+1(4-3)$ $=k+2-2k-3+1$ $=-k$ $⇒-k≠0$ $⇒k≠0$ |