If cosec A - cot A = $\frac{1}{4}$, then the value of tan A is: |
$\frac{8}{15}$ $\frac{8}{17}$ $\frac{15}{17}$ $\frac{17}{15}$ |
$\frac{8}{15}$ |
As , cosecA - cotA = \(\frac{1}{4}\) ----(1) then cosec A + cotA = 4 -----(2) Subtract 1 from 2 2cotA = 4 - \(\frac{1}{4}\) = \(\frac{15}{4}\) cotA = \(\frac{15}{8}\) So , tanA = \(\frac{8}{15}\)
|