If $f(x)=2\left(\tan ^{-1}\left(e^x\right)-\frac{\pi}{4}\right)$, then $f(x)$ is: |
even and is strictly increasing in $(0, \infty)$ even and is strictly decreasing in $(0, \infty)$ odd and is strictly increasing in $(-\infty, \infty)$ odd and is strictly decreasing in $(-\infty, \infty)$ |
odd and is strictly increasing in $(-\infty, \infty)$ |
The correct answer is Option (3) → odd and is strictly increasing in $(-\infty, \infty)$ $f(x)=2\left(\tan ^{-1}\left(e^x\right)-\frac{\pi}{4}\right)$ $f(-x)=2\left(\tan^{-1}\left(\frac{1}{e^x}\right)-\frac{\pi}{4}\right)$ $f(-x)=2\left(\cot^{-1}e^x-\frac{\pi}{4}\right)$ $=2\left(\frac{\pi}{2}-\tan^{-1}e^x-\frac{\pi}{4}\right)$ $=-2\left(\tan^{-1}e^x-\frac{\pi}{4}\right)$ $f(-x)=-f(x)$ odd function $f(-x)=\frac{2e^x}{1+e^{2x}}>0$ always $f(x)$ → strictly increasing |