The slope of the normal to the curve $x=a \cos ^3 \theta, y=a \sin ^3 \theta$ at $\theta=\frac{\pi}{4}$ is: |
0 1 -1 2 |
1 |
The correct answer is Option (2) - 1 $x=a \cos ^3 \theta, y=a \sin ^3 \theta$ $\frac{dx}{dθ}=-3a\cos^2θ\sin θ$, $\frac{dy}{dθ}=3a\sin^2θ\cos θ$ slope of normal = $-\frac{dx}{dy}=\frac{\cos θ}{\sin θ}$ $\left.-\frac{dx}{dy}\right]_{θ=\frac{\pi}{4}}=1$ |