For \(A=\left[\begin{array}{ll}2 & 3\\ 1& 2\end{array}\right]\) which of the following is true: |
\(A^2-4A=I\) \(A^2-4A-I=0\) \(A^2-4A+I=0\) \(A^2+4A+I=0\) |
\(A^2-4A+I=0\) |
$A=\left[\begin{array}{ll}2 & 3\\ 1& 2\end{array}\right]$ $⇒A^2=\left[\begin{array}{ll}2 & 3\\ 1& 2\end{array}\right]\left[\begin{array}{ll}2 & 3\\ 1& 2\end{array}\right]=\left[\begin{array}{ll}7 & 12\\ 4& 7\end{array}\right]$ $⇒A^2-4A+I=\left[\begin{array}{ll}7 & 12\\ 4& 7\end{array}\right]-4\left[\begin{array}{ll}2 & 3\\ 1& 2\end{array}\right]-\left[\begin{array}{ll}1 & 0\\ 0& 1\end{array}\right]$ $=0$ |