At what speed should a galaxy move with respect to earth so that spectral line of 600.0 nm appears as 600.6 nm? |
$3×10^6 m s^{-1}$ $3×10^5 m s^{-1}$ $5×10^6 m s^{-1}$ $5×10^5 m s^{-1}$ |
$3×10^5 m s^{-1}$ |
The correct answer is Option (2) → $3×10^5 m s^{-1}$ Using the doppler effect for light, the relationship between the observed wavelength and emitted wavelength is- $λ_{observed}=λ_{emitted}\left(1+\frac{v}{c}\right)$ where, $λ_{observed} = 600.3 nm$ (Observed wavelength) $λ_{emitted} = 600.0 nm$ (Emitted wavelength) $v$ = relative velocity $c = 3×10^8m/s$ $∴v=c\left(\frac{λ_{observed}}{λ_{emitted}}-1\right)$ $=3×10^8\left(\frac{600.6}{600.0}-1\right)$ $=3×10^8×0.001=3.0×10^5m/s$ |