An alpha-particle moves with a speed of $(5×10^5\hat i) m s^{-1}$. It enters a region where there is a magnetic field of magnitude 4 T, directed at an angle of 45° to the X-axis and lying in XY plane. The magnitude of magnetic force on alpha particle is: |
$1.6 × 10^{-14} N$ $3.2 × 10^{-13} N$ $4.5 × 10^{-13} N$ $1.6× 10^{-13} N$ |
$4.5 × 10^{-13} N$ |
The correct answer is Option (3) → $4.5 × 10^{-13} N$ To calculate the Magnetic field ($\vec B$) on alpha-particle, $F=q(\vec v×\vec B)$ $=qvB\sin θ$ where, q = charge on particle = $2e = 2×1.6×10^{-19}C$ v = velocity of α-particle = $5×10^5m/s$ B = magnetic field = 4T $θ=45°$ (angle between $\vec v$ and $\vec B$) $∴F=(2×1.6×10^{-19})×(5×10^5)×(4)×(\frac{1}{\sqrt{2}})$ $=\frac{64}{\sqrt{2}}×10^{-14}$ $≃4.5 × 10^{-13} N$ |