The solution set of the inequality $\frac{2x+3}{x-1}<0$ is: |
$x ∈ (-∞, 1)$ $x ∈ (-∞, \frac{3}{2})$ $x ∈ (-\frac{3}{2},1)$ $x ∈ (-∞, \frac{2}{3})$ |
$x ∈ (-\frac{3}{2},1)$ |
The correct answer is Option (3) → $x ∈ (-\frac{3}{2},1)$ Given inequality: $\frac{2x+3}{x-1} < 0$ Find zeros of numerator and denominator: Numerator: $2x + 3 = 0 \Rightarrow x = -\frac{3}{2}$ Denominator: $x - 1 = 0 \Rightarrow x = 1$ Critical points: $x = -\frac{3}{2}, 1$ Test intervals: 1. $x < -\frac{3}{2}$: $(2x+3)/(x-1) = (-)/(−) = +$ → not valid 2. $-3/2 < x < 1$: $(+)/(−) = −$ → valid 3. $x > 1$: $(+)/(+) = +$ → not valid Solution set: $x \in \left(-\frac{3}{2}, 1\right)$ |