Given two independent events A and B such that P(A) = 0.3 and P(B) = 0.6, then Match the following
Choose the correct answer from the options given below: |
A - IV, B - III, C - II, D - I A - III, B - IV, C - I, D - II A - II, B - III, C - IV, D - I A - I, B - II, C - III, D - IV |
A - IV, B - III, C - II, D - I |
The correct answer is Option (1) → A - IV, B - III, C - II, D - I (A) $P(A∩B)=P(A)P(B)=0.18$ (IV) (B) $P(A∩\bar B)=P(A)P(\bar B)=0.3×0.4=0.12$ (III) (C) $P(A\,or\,B)=P(A)+P(B)-P(A∩B)=0.3+06-0.18=0.72$ (II) (D) $P(\bar A∩\bar B)=P(\overline{A∪B})=1-P(A∪B)=1-0.72=0.28$ (I) |