If the tangent to the curve $x y+a x+b y=0$ at $(1,1)$ makes an angle $\tan ^{-1} 2$ with x-axis, then $\frac{a+b}{a b}=$ |
0 $\frac{1}{2}$ $-\frac{1}{2}$ none of these |
$\frac{1}{2}$ |
We have, $x y+a x+b y=0$ ……(i) $\Rightarrow x \frac{d y}{d x}+y+a+b \frac{d y}{d x}=0$ $\Rightarrow \frac{d y}{d x} =-\left(\frac{y+a}{x+b}\right) $ $\Rightarrow \left(\frac{d y}{d x}\right)_{(1,1)} =-\left(\frac{a+1}{b+1}\right) $ $\Rightarrow 2 =-\left(\frac{a+1}{b+1}\right) $ $\left[\begin{array}{r}\text { Given : Slope of the tangent } \\ \text { at }(1,1) \text { is } \tan \theta=2\end{array}\right]$ $\Rightarrow a+2 b =-3$ …..(ii) Also, $(1,1)$ lies on (i). ∴ $a+b=-1$ …….(iii) Solving (ii) and (iii), we get $a=1, b=-2 \Rightarrow \frac{a+b}{a b}=\frac{1}{2}$ |