The probability distribution of a discrete random variable is given by : $P(X-x)=\left\{\begin{matrix} 3kx & for & x=1, 2,3 \\2k(x+3) & for & x=4, 5, 6\\0 & & otherwise \end{matrix}\right.$ where k is a constant. The mean of X is : |
$\frac{13}{3}$ $\frac{5}{3}$ 2.5 $\frac{10}{3}$ |
$\frac{10}{3}$ |
The correct answer is Option (4) → $\frac{10}{3}$ Sum of probabilities, $3k(1)^2+3k(2)^2+3k(3)^2+k(4+3)+k(5+3)+k(6+3)=1$ $3k+12k+27k+7k+8k+9k=1$ $k=\frac{1}{66}$ $E(X)=\sum\limits_xx.P(X=x)$ $=1×3k(1)+2.3k(4)+3.3k(9)+4.k(7)+5.k(8)+6.k(9)$ $=\frac{115}{33}$ |