Target Exam

CUET

Subject

General Aptitude Test

Chapter

Quantitative Reasoning

Topic

Geometry

Question:

In ΔABC, ∠B = 90°, AD and CE are the medians drawn form A and C, respectively. If AC = 10 cm and AD = $\sqrt{55}$ cm, then the length of CE is :

Options:

$2\sqrt{15}$ cm

$\sqrt{70}$ cm

$\sqrt{66}$ cm

$5\sqrt{3}$ cm

Correct Answer:

$\sqrt{70}$ cm

Explanation:

We have,

∠B = 90°

AC = 10 cm

AD = √55 cm

In right angled triangle ABC,

We know that,

= AC2 = AB2 + BC2

In right angled triangle ABD,

= AD2 = AB2 + BD2

= AD2 = AB2 + \(\frac{BC^2}{4}\) ...(a)

In right angled triangle CBE,

= CE2 = BE2 + BC2

= CE2 = \(\frac{AB^2}{4}\) + BC2   ....(b)

Adding a and b,

= AD2 + CE2 = AB2 + BC2/4 + AB2/4 + BC2

= AD2 + CE2 = \(\frac{5}{4}\) × (AB2 + BC2)

= AD2 + CE2 = \(\frac{5}{4}\) × AC2

= CE2 = \(\frac{5}{4}\) × 102 - (√55)2

CE = √70 cm