In ΔABC, ∠B = 90°, AD and CE are the medians drawn form A and C, respectively. If AC = 10 cm and AD = $\sqrt{55}$ cm, then the length of CE is : |
$2\sqrt{15}$ cm $\sqrt{70}$ cm $\sqrt{66}$ cm $5\sqrt{3}$ cm |
$\sqrt{70}$ cm |
We have, ∠B = 90° AC = 10 cm AD = √55 cm In right angled triangle ABC, We know that, = AC2 = AB2 + BC2 In right angled triangle ABD, = AD2 = AB2 + BD2 = AD2 = AB2 + \(\frac{BC^2}{4}\) ...(a) In right angled triangle CBE, = CE2 = BE2 + BC2 = CE2 = \(\frac{AB^2}{4}\) + BC2 ....(b) Adding a and b, = AD2 + CE2 = AB2 + BC2/4 + AB2/4 + BC2 = AD2 + CE2 = \(\frac{5}{4}\) × (AB2 + BC2) = AD2 + CE2 = \(\frac{5}{4}\) × AC2 = CE2 = \(\frac{5}{4}\) × 102 - (√55)2 CE = √70 cm |