Let $A = [a_{ij}]$ be a square matrix, where $a_{ij} =\left\{\begin{matrix}0,&\text{when i = j}\\1,&\text{otherwise}\end{matrix}\right.$. If $\text{|adj A|} = |A|^2$, then which of the following statements are correct? (A) A is a skew symmetric matrix. Choose the correct answer from the options given below: |
(A), (B) and (C) only (B) and (D) only (A) and (C) only (B), (C) and (D) only |
(B) and (D) only |
The correct answer is Option (2) → (B) and (D) only Given: $A = [a_{ij}]$ such that $a_{ij} = \begin{cases} 0 & \text{if } i=j \\ 1 & \text{if } i \neq j \end{cases}$ Property: For any square matrix of order $n$, $\det(\text{adj }A) = (\det A)^{n-1}$ Given: $|\text{adj }A| = |A|^2$ So, $(\det A)^{n-1} = (\det A)^2 \Rightarrow n-1 = 2 \Rightarrow n = 3$ Check options: (A) Skew-symmetric: $A^T = -A$ → Not true because $A^T = A$, not $-A$ (B) Non-singular: $\det A \neq 0$ → True (since adj A exists and determinant is non-zero) (C) Square matrix of order 4 → False, $n=3$ (D) Symmetric: $A^T = A$ → True |